EF hands at the N-lobe of calmodulin are required for both SK channel gating and stable SK–calmodulin interaction
نویسندگان
چکیده
Small conductance calcium-activated potassium (SK) channels respond to intracellular Ca(2+) via constitutively associated calmodulin (CaM). Previous studies have proposed a modular design for the interaction between CaM and SK channels. The C-lobe and the linker of CaM are thought to regulate the constitutive binding, whereas the N-lobe binds Ca(2+) and gates SK channels. However, we found that coexpression of mutant CaM (E/Q) where the N-lobe has only one functional EF hand leads to rapid rundown of SK channel activity, which can be recovered with exogenously applied wild-type (WT), but not mutant, CaM. Our results suggest that the mutation at the N-lobe EF hand disrupts the stable interaction between CaM and SK channel subunits, such that mutant CaM dissociates from the channel complex when the inside of the membrane is exposed to CaM-free solution. The disruption of the stable interaction does not directly result from the loss of Ca(2+)-binding capacity because SK channels and WT CaM can stably interact in the absence of Ca(2+). These findings question a previous conclusion that CaM where the N-lobe has only one functional EF hand can stably support the gating of SK channels. They cannot be explained by the current model of modular interaction between CaM and SK channels, and they imply a role for N-lobe EF hand residues in binding to the channel subunits. Additionally, we found that a potent enhancer for SK channels, 3-oxime-6,7-dichloro-1H-indole-2,3-dione (NS309), enables the recovery of channel activity with CaM (E/Q), suggesting that NS309 stabilizes the interaction between CaM and SK channels. CaM (E/Q) can regulate Ca(2+)-dependent gating of SK channels in the presence of NS309, but with a lower apparent Ca(2+) affinity than WT CaM.
منابع مشابه
Domains responsible for constitutive and Ca(2+)-dependent interactions between calmodulin and small conductance Ca(2+)-activated potassium channels.
Small conductance Ca(2+)-activated potassium channels (SK channels) are coassembled complexes of pore-forming SK alpha subunits and calmodulin. We proposed a model for channel activation in which Ca2+ binding to calmodulin induces conformational rearrangements in calmodulin and the alpha subunits that result in channel gating. We now report fluorescence measurements that indicate conformational...
متن کاملSmall conductance Ca2+-activated K+ channels and calmodulin.
Small conductance Ca(2+)-activated K(+) channels (SK channels) contribute to the long lasting afterhyperpolarization (AHP) that follows an action potential in many central neurones. The biophysical and pharmacological attributes of cloned SK channels strongly suggest that one or more of them underlie the medium component of the AHP that regulates interspike interval and plays an important role ...
متن کاملControl of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines
The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR) and voltage-gated Ca2+ -channel (VGCC) activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively ...
متن کاملControl of Ca Influx and Calmodulin Activation by SK-Channels in Dendritic Spines
The key trigger for Hebbian synaptic plasticity is influx of Ca into postsynaptic dendritic spines. The magnitude of [Ca] increase caused by NMDA-receptor (NMDAR) and voltagegated Ca -channel (VGCC) activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca -sensitive enzymes such as calmodulin. Ca influx is negatively regulated b...
متن کاملControl of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels.
In most central neurons, action potentials are followed by an afterhyperpolarization (AHP) that controls firing pattern and excitability. The medium and slow components of the AHP have been ascribed to the activation of small conductance Ca(2+)-activated potassium (SK) channels. Cloned SK channels are heteromeric complexes of SK alpha-subunits and calmodulin. The channels are activated by Ca(2+...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 134 شماره
صفحات -
تاریخ انتشار 2009